On-line Detection and Removal of Radioactive lodine from Aqueous Systems through the use of Scintillating Exchange Resin

Outline

- Why Radioactive Iodine?
- Iodine Chemistry

- Objectives
- Summary Results
- Going Forward

Radioactive lodine in the Environment

Why Are We Concerned?

- ¹²⁹I is a high inventory nuclear waste product as fission product

More Concerns...

Safe Drinking Water Act (SDWA)

- Sets Maximum Contaminant Level (MCL) for beta-emitters at 4 mrem/yr 1811;

Iodine Chemistry

- Iodide (I⁻) tends to dominate in anoxic waters
- Iodate (IO₃⁻) is the more dominant species in oxygenated waters
- Dissolved organic iodine (DOI) is highly variable depending on organic carbon content
 Prone to electrophilic aromatic substitution w/ phenolic and a-methyl carbonyl groups
- ◆ $IO_{3^{-}}$ and DOI (K_d on the order of 1000 cm³/g) tend to sorb more strongly than I⁻ (K_d ≤ 1 cm³/g)

Environmental Aqueous Iodine

Species		Conc. (µg/L)	System
	Min.		Coastal surface seawater
	Max.		deep ocean and freshwater
IO3-	Min.	< 3	estuarine and freshwater
	Max.	60	deep ocean water
DOI	Min.	0.065	ambient SRS groundwater
	Max.	5.7	SRS groundwater + wetland sediment
			-oralla

Standard Iodine Detection Methods

Source	Species	Method	Detection Range (µg/L)
AWWA		Leuco Crystal Violet	50 - 6,000
		Catalytic Reduction	
		Differential Pulse Polarography	
		Method 902.0: Precipitation –	

- Most methods are confined to a single matrix (i.e. freshwater,
- Sensitive to salts and organics
- Requires multiple steps including precip preconcentration methods
- Time-consuming

Non-Standard Iodine Detection
MethodsSpeciesMethodDetection Range (µg/L)IHPLC~0.13

	HPLC		
IO3-	HPLC	~0.13	
	ICP-MS	0.00565	
	Capillary Electrophoresis	38.13	
		Indirect	
		and a	

On-line Radiochromatography

- Couple flow-cell scintillation detection with liquid chromatography
- ♦ DeVol et al., 2000
 - Used acrylic and styrenic polymer beads infused with PPO and DM-POPOP fluors
 - Utilized ABEC, Aliquat-336, and TEVA
 - extractants (Extraction Chromatograph
 - Detection of ⁹⁹Tc down to 168 pCi/L (6.2 Bq/L)

- Drawback
- Leaching of extractant/ scintillator over time

mL

MDOA

100 120 140 160 180 200

Volume mL

Incorporation of Scintillation and Anion Exchange

Principle

- Aqueous radioactive iodate is preferentially removed by modified resin
- Incorporation of organic fluor into resir
- Promotes nigner probability of interaction relative to heterogenous resins
 Increased detection efficiency
- Off-line or On-line measurements
- Component
 - Inert polymeric support material
 - Inert organic fluor diffused into polyme
 - Infused liquid anion exchange group

Objectives

- 1. Identify an anion exchange group selective for iodate
- 2. Synthesize homogeneous scintillating exchange resin
- 3. Utilize resin in an on-line flow-cell scintillation detection system
- Characterize resin in terms of capacity, kinetics, on-line loading efficiency, detection efficiency, and interferences

1. Anion Exchange Group

- Previous studies by Seliman et al. (2010) identified N-methyldi-n-octylamine (MDOA) and triethylamine (TEA) as efficient exchange groups for pertechnetate (TcO₄-)
- Preliminary tests showed MDOA was an effective group for iodate removal

2. Scintillating Exchange Resin Fabrication

- Utilized chloromethyl polystyrene resin as a polymeric support
- Infused resin with 2-(1-naphthyl)-5phenyloxazole (α-NPO) scintillator
- Aminated resin with MDOA

4. Resin Characterization

- Run batch and on-line flow-cell experiments to characterize resin:
- Analyses
 - Loading efficiency
 - Detection efficiency
 - Capacity
 - Kinetics
 - Interferences

Summary Results

- Typical Loading ε: ~90%
- Typical Detection ε: ~50%
- Typical Uptake Kinetics: < 2 min</p>
- ♦ Capacity: >7.5 meq IO₃⁻/g
- ◆ MDC: 0.4 Bq/L
- Volume: 195 mL
- Count Time: 3.25 hr
- Interferences: NO₃⁻ and SO₄⁻² at 50-100x ambient levels

Moving Forward

- ♦ Tasks
 - Identification of iodine-selective ligand
 - Resin characterization (capacity, kinetics, pore volume, surface area, packed bed density, interferences, etc.)
 - Collection and analysis of aqueous
 environmental samples

Acknowledgements

- U.S. Department of Energy Nuclear Engineering and Health Physics Fellowship
- Tim DeVol and Kirk Freeman