Looking Into the Past: Using XRF Technology to Test Medieval Ink

Kim Haley, MSEE, CIH
UNC-CH
Topics

- Niton XLp300A General Information
- Campus applications
- Radiation Safety
- Unusual request
- Results
- Conclusions
Nitron XLp 300A

- Lead paint analyzer
- Source: Cd-109 40 mCi
- Energies: 22.5 and 88.1 keV
- Intensity: 315 mREM/hr
- Sampling modes: Standard and K&L
- Unit of measurement: mg/cm²
Campus Applications

- OSHA compliance (1910.1025, 1926.62)
 - General and Construction Lead Standards
 - Applies if any detectable lead
 - Prior to scraping, demolition, repair
 - Determine lead concentration in paint
 - Ensure there is air monitoring data indicating acceptable exposure
Campus Applications

Previous air monitoring results performed in the past 12 months for similar work activities:

- Type of material (i.e., concrete, drywall, plaster)
- Lead concentration in material
- Task (i.e., wet scraping of paint or demolition)
- Environmental conditions (i.e., indoor or outdoor)
Personal Protective Equipment

- Coveralls
- work shoes
- gloves
- respirator
Campus Applications

- **EPA Compliance**
 - Lead-based paint regulations
 - Definition: 1.0 mg/cm²
 - Target Housing and Child-Occupied Facilities
 - Built prior to 1978
 - Rental housing and FPG Child Development Center
 - Protect kids under the age of six
 - Work practice requirements
 - Clearance requirements
Radiation Safety: Sealed Source

Weld
SS Shell
Shielding
Substrate
Radioactive Material
Window

Source: Niton XRF Analyzers
Radiation Safety

Know beam location

Source: Niton XRF Analyzers
Radiation Safety

Know beam location

Source: Niton XRF Analyzers
Radiation Safety

Know when the primary beam is open

“Shutter Open” LED indicators

Proximity Switch

Release Trigger

Source: Niton XRF Analyzers
Leak Tests
Sampling modes

- **Standard mode**
 - Provides fast readings
 - Beeps twice when the 95% confidence level is reached, then terminates reading
Sampling Modes

- **Depth Index**
 - Indication of the amount of non-leaded paint covering the lead
 - \(DI \leq 1.5 \)
 - Lead near the surface
 - \(1.6 \leq DI \leq 4.0 \)
 - Lead at moderate depth
 - \(DI \geq 4.0 \)
 - Lead deeply buried
Sampling modes

- **K&L mode**
 - Beeps twice when 95% confidence level is reached
 - Flexibility of continuing test up to user-defined maximum test time
 - Default: 20 secs
Unusual Request

- Contacted by Conservators for the Rare Book Collection
- Test the ink in a illuminated medieval manuscript
- XLp 300A provides qualitative data on other elements
Illuminated Medieval Manuscript

Authored by a monk from a French monastery. Includes a calendar and books from the Bible.
Illuminated Medieval Manuscript

- Illumination: the embellishment of a manuscript with luminous colors (especially gold)
- Calendars: most often precede devotional texts; identify feast days pertinent to the patron and the region

Source: www.leavesofgold.org
What caused the discoloration of the ink? Is there a difference in the ink?
Illuminated Ink

What caused the discoloration?
Testing
Results

Most peaks in "Low Energy Spectra":
0-40 keV
Results
Spectra: X-Ray Line

<table>
<thead>
<tr>
<th>Element</th>
<th>K Alpha Column</th>
<th>K Beta Column</th>
<th>L Alpha Column</th>
<th>L Beta Column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>22.10</td>
<td>24.99</td>
<td>2.98</td>
<td>3.15</td>
</tr>
<tr>
<td>Al</td>
<td>1.48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ar</td>
<td>2.96</td>
<td>3.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>10.53</td>
<td>11.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td>68.79</td>
<td>77.97</td>
<td>9.71</td>
<td>11.44</td>
</tr>
<tr>
<td>Ba</td>
<td>32.19</td>
<td>36.38</td>
<td>4.47</td>
<td>4.83</td>
</tr>
<tr>
<td>Bi</td>
<td>77.10</td>
<td>87.34</td>
<td>10.84</td>
<td>13.02</td>
</tr>
<tr>
<td>Br</td>
<td>11.91</td>
<td>13.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>3.69</td>
<td>4.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>23.11</td>
<td>26.14</td>
<td>3.13</td>
<td>3.32</td>
</tr>
<tr>
<td>Ce</td>
<td>34.72</td>
<td>39.26</td>
<td>4.84</td>
<td>5.26</td>
</tr>
<tr>
<td>Cl</td>
<td>2.62</td>
<td>2.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>6.93</td>
<td>7.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>5.41</td>
<td>5.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs</td>
<td>30.97</td>
<td>34.98</td>
<td>4.29</td>
<td>4.62</td>
</tr>
<tr>
<td>F</td>
<td>0.34</td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Spectra: X-Ray Line

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba</td>
<td>32.19</td>
<td>36.38</td>
<td>4.47</td>
<td>4.83</td>
</tr>
<tr>
<td>Bi</td>
<td>77.10</td>
<td>87.34</td>
<td>10.84</td>
<td>13.02</td>
</tr>
<tr>
<td>Br</td>
<td>11.91</td>
<td>13.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>3.69</td>
<td>4.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>23.11</td>
<td>26.14</td>
<td>3.13</td>
<td>3.32</td>
</tr>
<tr>
<td>Ce</td>
<td>34.72</td>
<td>39.26</td>
<td>4.84</td>
<td>5.26</td>
</tr>
<tr>
<td>Cl</td>
<td>2.62</td>
<td>2.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>6.93</td>
<td>7.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>5.41</td>
<td>5.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs</td>
<td>30.97</td>
<td>34.98</td>
<td>4.29</td>
<td>4.62</td>
</tr>
<tr>
<td>Cu</td>
<td>8.04</td>
<td>8.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>6.40</td>
<td>7.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hf</td>
<td>55.76</td>
<td>63.21</td>
<td>7.90</td>
<td>9.02</td>
</tr>
<tr>
<td>Hg</td>
<td>70.82</td>
<td>80.26</td>
<td>9.99</td>
<td>11.82</td>
</tr>
<tr>
<td>I</td>
<td>28.61</td>
<td>32.29</td>
<td>3.94</td>
<td>4.22</td>
</tr>
<tr>
<td>In</td>
<td>24.14</td>
<td>27.38</td>
<td>3.28</td>
<td>3.45</td>
</tr>
</tbody>
</table>

Ce-Ka

Ce-Kb

35.00

42.50
Results

Rhodium (Rh)

Palladium (Pd)
Results

- Titanium (Ti)
- Potassium (K)
- Calcium (Ca)

Graph showing counts per second and energy levels for different elements.
Results

Copper (Cu)

Zinc (Zn)
Results
Results
Results

#328 has more Au and Pb
Results

#328

#330
#330 has slightly more Au but less Pb
Medieval Ink

- Sources included animals, plants and natural minerals
- Early scribes prepared own pigments
 - Recipes differed
- Early 13th century scribes began purchasing ingredients
 - Standard colorants began to emerge
Cause of Discoloration

- Incompatible colors?
 - Orpiment
 - Naturally occurring
 - Yellow
 - Darkens Lead and Copper
 - In Europe used to mix with azurite to make green
Nitron XLp 300A Limitations

- Designed specifically as a lead paint analyzer
- “Likely present” elements are not well defined
- Cd-109 emits gamma rays
 - Perfect for seeing all of the XRF lines of lead
 - Too much signal for other elements
- Detector specific for lead
 - Trade off is higher resolution
 - Hard to discern elements at low levels
Nitron XLp 300A Limitations

- Readings taken in Standard Mode
 - All at 1.4 seconds
 - Short duration to see low levels of elements
 - Longer the reading = more signal = more defined peaks
XL3t Niton XRF Analyzers

- Equipped with a 50 keV x-ray tube
- Lower detection limits for higher-Z elements
- Shorter measurement times
GOLDD Technology

- **Geometric Advantage**
 - Detector closer to sample
 - Higher count rate

- **Optimized Excitation**
 - Higher voltage = Higher excitation
 - Produce more X-rays

- **Large Drift Detector**
 - Use largest area drift detectors commercially available
 - Collect more X-rays
GOLDD Technology

- **Metal and Alloy Analysis**
 - Scrap metal sorting
 - Jewelry analysis & precious metal identification

- **Mining and Exploration**
 - Exploration
 - Mine mapping
 - Ore grade control

- **Environmental Analysis**
 - Soil testing
Lead Paint Testing: Isotope vs. X-Ray Tube

<table>
<thead>
<tr>
<th>Source</th>
<th>Energy Level</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd-109</td>
<td>22.5 and 88.1 keV</td>
<td>K and L shells</td>
</tr>
<tr>
<td>X-Ray Tube</td>
<td>50 keV</td>
<td>L shell only</td>
</tr>
</tbody>
</table>
Lead Paint Testing: Isotope vs. X-ray Tube

- **22.5 keV (isotope) and 50 keV (X-ray tube)**
 - Produce fluorescent L shell Pb X-rays
 - 10.55 and 12.61 keV
 - Too weak to escape layers of paint
 - Chance of missing deeply buried lead
 - False negative result

- **88.1 keV (isotope)**
 - Produces fluorescent K shell Pb X-rays
 - Enough energy to penetrate paint layers
Lead Paint Testing: Isotope vs. X-ray Tube

- X-ray Tube instruments have inconclusive range near 1.0 mg/cm² (lead-based paint)
 - Cannot determine reading + or -
 - Have to collect paint chips for lab analysis
 - Provide inconclusive results 16% of all samples
 - Provide false-positive results 2.5% of all samples
 - Provide false-negative results 1.9% of all samples
Conclusions

- XLp 300A is designed for lead paint analysis
- Other XRF analyzers are more suited for detecting other elements