Competitive Uptake of Plutonium and Iron in Corn (Zea mays)

Stephanie Hoelbling
F. Molz, N. Tharayil, B. Powell, and N. Martinez
Graduate Research Assistant
Introduction

- Interested in the plant mechanisms that influence iron uptake, and subsequently plutonium uptake
- Two applications
 - Phytoremediation
 - Nuclear forensics/monitoring
Introduction

• Iron is an essential nutrient for plants
• Pu is of concern due to the long-term environmental and health concerns
• Is plutonium taken up through the same plant pathway as iron?
Introduction

• Corn species of interest
 - Trucker’s Favorite
 - Yellow Stripe 1 (YS1)

• If YS1 uptakes Pu, then the Pu/Fe pathway is different.
Introduction

- Initial experiments compare Pu(DFOB) and 59Fe(DFOB) corn uptake
- Conducted two experiments: One compared plant uptake of ~37kBq Pu(DFOB) and ~37kBq of Fe(DFOB). The other compared plant uptake of ~37kBq Pu(DFOB) and either 0 or 10x Fe concentration found in nutrient solution
- Experiment 1:
 More 59Fe activity was found in the shoots than Pu
 More Pu was found in the roots than Fe
- Experiment 2:
 Differences in iron concentrations had no effect on Pu uptake
Hydroponic Solution and Foliar Fertilization

- Hydroponic nutrient (HP) solution
 - Allows nutrient control

- Foliar Fertilization
 - Two different types of foliar fertilization (FF) techniques were attempted
 - Type 1: Hydroponic nutrient solution containing FeCl$_3$
 - Type 2: FeCl$_3$ with DDI
Overall Experimental Setup
Analysis Methods

Harvest

• Roots and shoots
• Cut, separate, and weigh

Dry

• Dry in oven at 50°C for 72 hours
• Reweigh
• Determine moisture content

Ash

• Ash at 450°C for 4 hours

Digest

• Microwave digestion using nitric acid

Analyze

• ICP-MS
Trial Experiments

• Four trial experiments
 - Trucker’s Favorite corn strain
 - Two different types of HP solution: one with FeCl\(_3\) and one without FeCl\(_3\)
 - Observe corn growth in presence and absence of iron
 - Establish foliar fertilization techniques

• The control group and FF spray group should produce similar results
Trial Experiments
Trial Experiments

- Corn was grown for 7 days once placed in HP solutions
- Roots and shoots were measured every day
- After 7 days, roots and shoots were cut, separated, and dried
- Plant tissues will be digested
- Will be analyzed via Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) for magnesium, potassium, calcium, iron, and molybdenum
Trial Experiments - Results

- FF type 1: FeCl$_3$ Hydroponic spray
- FF type 2: 2x FeCl$_3$ + DDI
Trial Experiments - Results
Planned Experiments

- Each experiment conducted twice: once with DFOB in solution and once with citric acid in solution
 - Comparison of two ligands
- Two citrate experiments were conducted based on modeling
- 40 Bq/mL Pu-239
Citrate Experiments

First round results:

10^6 [Pu]

10^4 [Pu]
Citrate Experiments

Second round results:

Median Root Growth

- Control
- 10[Pu]
- 100[Pu]
- 1000[Pu]

Median Shoot Growth

- Control
- 10[Pu]
- 100[Pu]
- 1000[Pu]
Planned Experiments

- Each experiment conducted twice: once with DFOB in solution and once with citric acid in solution
 - Comparison of two ligands

- 4 rounds per experiment:

 Round 1 → No plutonium
 Round 2 → High Pu/Low Fe ratio
 Round 3 → High Pu/High Fe ratio
 Round 4 → Low Pu/High Fe ratio
Planned Experiments

Round 1 ➔
No plutonium

Round 2 ➔ High Pu/Low Fe ratio
Future Work

- ^{238}U, ^{237}Np, ^{232}Th experiments
- Continue to digest and analyze Trial Experiment corn
- Continue primary experiment rounds
Acknowledgments

Student and project funding provided by the United States Nuclear Regulatory Commission Nuclear Education Grant #NRC-HQ-13-G-38-0002.

I would also like to acknowledge Dr. Molz for providing preliminary data, Dr. Powell for modeling assistance, and Dawn Montgomery and Nate Conroy for their laboratory assistance.

