Disaster Preparedness and Recovery for R&D Facilities – Lessons Learned

By: Matt Norton, CIH, CSP

Philotechnics, Ltd.
25 Mall Road, Suite 310
Burlington, MA 01803
mdnorton@philotechnics.com
Overview

- Facility fire overview
- Relevant factors
- Who has similar facility risks?
- What can be done to mitigate liabilities?
 - Licensees
 - Insurance Companies
- Coming Changes
Facility Fire Facts

- 1900 vintage building
- More than 45,000 square feet of restricted laboratory space impacted
- Active in production of custom isotopic products
- 200 fume hoods impacted
- 130 refrigerators/freezers
Isotopes and Quantities Present

- **Low Energy Beta and Gamma Emitters**
 - Carbon (14C)
 - Tritium (3H)

- **Facility License Limits**
 - 500 Curies (14C)
 - 100,000 Curies (3H)

- Estimated that only a minor amounts of radioactivity was released initially
Fire Captured on Discovery Channel
Firehouse Boston Series Film Crew

- Engine 37/Ladder 26 Huntington Avenue Fire Department
- Estimated that 60,000 gallons of fire suppression water introduced into the building envelop
Immediate Health and Safety Issues

- Structural Integrity of the Building Roof
- No Electrical Services
- In-Process Radioactive Material Production
- Thousands of containers of Hazardous Chemicals
- Water Damage
Secondary Contamination Issues

- Fire Department Protocol
 - Broke out all windows and pumped in as much water as possible

- Building Fire Sprinkler System Activated

- Building Structure
 - Main Laboratory Area
 - Adjacent Office Areas
Water Proliferation In the Building

- Fire suppression water introduced on the top floor of the structure

- Water pathways
 - Flooring
 - Door ways
 - Stairways
 - Into adjacent structures
Contamination Migration Scenario

- Only small quantities of radioactive materials were initially involved at the point of origin
- Water entered fume hoods on each floor
- Contaminated water spilled out into the laboratory
- C-14 and H-3 contamination released on all floors of the building
Contaminated Chemical Materials

- Common laboratory chemicals and reagents
- High hazard materials
 - Toxics
 - Corrosives
 - Reactive
 - flammable
- Compressed Gases
Chemical Removal

- Centralized staging area
- Segregated based on hazard and compatibility
- Surveyed for external and internal contamination
- Repacking operations
- Decontamination Operations
Insurance Audit Team

- Audit Team
 - Accounting Firms
 - Loss Claims Specialists
 - Customer Representatives
 - Insurance Representatives

- Daily checks from multiple sources
- All materials removed from the site had to be tracked in sufficient detail to assign a replacement cost
Insurance Coverage Categories

- Restore facilities to pre-event conditions
- Replace damaged structures
- Replace damaged inventories
- Replace damaged equipment
- Pay for business interruption
Special Issues for RAM Licensees

- What is the pre-event condition of the facility
- What equipment is a loss and what can be repaired
- Inventory losses
- What laboratory structures need to be replaced
What is the pre-event condition?

- License Limits for Contamination
 - Restricted/Unrestricted
 - Units Used

- Routine Surveys
 - Backup information
 - Use of <R values

- Comprehensiveness of surveys
 - Compliance with license conditions
 - Documenting radiological conditions of structures not typically surveyed
The Real Issue – Radioactive Waste

- GMP and pharmaceutical grade production facilities
- Most materials damaged become radioactive wastes
- Disposal cost for non-rad claims are typically a fraction for the overall costs
- Replacement of large components and systems result in significant replacement and disposal costs
- What materials will require removal to restore the facility to a pre-fire condition
The Financial Stakes Are High

- Radioactive characterization, waste removal and disposal cost for large structures can equate to millions
- Surface and volumetric contamination issues
- Dose based limits vs license limits
- Overall approach for managing contamination levels through operational controls
RAM Facility Recommendations

- Use RAM in steel and concrete structures
- Laboratory benches and cabinetry should be made of non-porous materials
- Used seamless floor coverings
- Fume hoods
 - Limit quantities of removable contamination present
 - Evaluate potential for fire protection water infiltration
 - Use of point source fire protection
Chemical Storage and Use

- Use protected storage cabinets
- Limit chemical container use in contaminated hoods
- Limit cross contamination issues
- Remove and dispose of radioactive wastes regularly
- Label in-process and facility generated chemicals
Radiation Protection/Emergency Response Recommendations

- Location of Radiation Protection and Safety Operations

- Radiation Detection Instrumentation
 - Portable detection equipment
 - Fixed laboratory equipment
 - Real-time monitoring
Emergency Response Recommendations

- Fire Department’s Role
- HAZWOPER trained personnel
- Emergency response drills
- Industrial hygiene and safety coordination
- Control/recovery/cleanup equipment
- Established relationship with response contractor(s)
Lessons Learned - Key Points

- This event is expected to be the single largest radiological laboratory insurance loss in US history
- Every insured licensee will be affected
- Review use areas and potential disaster scenarios
- Update license
- Perform comprehensive radiological evaluations and document routine surveys completely
Questions and Experiences???

Matt Norton, CIH, CSP
781.222.5050
mdnorton@philotechnics.com