METHODS OF ASSESSING PAST EXTERNAL EXPOSURES FROM ENVIRONMENTAL CONTAMINATION OF THE TECHA RIVER IN THE FORMER U.S.S.R.

April 10th, 2015

BC Schwarz, M.S.

Advanced Laboratory for Radiation Dosimetry Studies (ALRADS)
University of Florida (UF)

Work Supported by United States Department of Energy
Previous External Dosimetry Studies

- EPA Federal Guidance Report No. 12 (FGR 12); 1993
 - Radionuclide-specific dose coefficients
 - ICRP 38 decay schemes
 - Adult stylized hermaphroditic phantom
 - Method for external dose coefficients

- Techa River Dosimetry System (TRDS); 2000 – Present
 - EPA FGR 12 organ dose coefficients
 - Adult stylized data only
Techa River Population Exposure

• Located southern Ural region, just east of Ural Mountains

• Result of failures in Mayak plutonium facility from ~ 1949 – 1956

• Exposure pathways
 • River drinking water
 • External gamma exposure

• Noted increase in both leukemia and solid cancer
 • Potential for direct data in general population (ETRC)
 • Potential for direct data in progeny (TROC)
Project Overview

• Noted increase in both leukemia and solid cancer
 • Potential for direct data in general population (ETRC)
 • Potential for direct data in progeny (TROC)

• Future TRDS – Techa River specific organ dose coefficients
 • Techa River soils
 • “Techa River phantoms”
 • Updated decay schemes – ICRP 107 vs. ICRP 38

• End goal: More accurate dose coefficients → More accurate dose reconstruction
Phantoms Utilized

• 1 YO, 5 YO, 10 YO, 15 YO, and adult male/female phantoms
 • UF/ICRP reference hybrid phantoms
 • ORNL stylized phantoms
 • UF Asian-scaled hybrid phantoms

• Asian-scaled phantoms matched according to height and sitting height and scaled using Rhinoceros 5®
 • Standing height
 • Sitting height
 • Chest circumference
Enamel/Dentin Delineation
Modeling Exposures

• 25 source energies
 • 10 keV – 10 MeV

• Infinite isotropic plane sources
 • 0, 0.04, 0.2, 1.0, 2.5, 4.0 mean free path depth

• FGR 12 dose coefficients for soil exposure
 • \(\rho_{\text{soil}} = 1.6 \text{ g cm}^{-3} \), Techa River specific?

• Three soils densities utilized
 • Reference (REF) = 1.6 g cm\(^{-3}\)
 • Upper Techa River (UTR) = 1.0 g cm\(^{-3}\)
 • Middle/Lower Techa River (MLTR) = 1.5 g cm\(^{-3}\)
Radiation Transport to Organ Dose Method

- Step 1: Transport to coupling cylinder
 - Environmental simulation to SSW file
Environmental Simulation
Radiation Transport to Organ Dose Method

- Step 1: Transport to coupling cylinder
 - Environmental simulation to SSW file

- Step 2: Re-transport from SSW to phantom
 - Read SSW file using SSR function in MCNPX
Radiation Transport to Organ Dose Method

- **Step 1: Transport to coupling cylinder**
 - Environmental simulation to SSW file

- **Step 2: Re-transport from SSW to phantom**
 - Read SSW file using SSR function in MCNPX

- **Step 3: Evaluate monoenergetic organ dose coefficients**

- **Step 4: Spectrum-weight monoenergetic organ dose coefficients**
 - 137Cs/137mBa, 106Ru/106Rh, 144Ce/144Pr, 95Zr, 95Nb, 91Y

- **Issues**
 - Hard drive space
 - Simulation time
Monoenergetic Photons – Liver: 0 – 2 cm

Energy (MeV)

Organ Dose Conversion Factor (Gy m3 Bq$^{-1}$ s$^{-1}$)

UF_30M
UF_30F
FGR12 (1993)
Monoenergetic Photons: 0 – 2 cm
Inter-Soil Spectrum-Weighted Dose Coefficients

<table>
<thead>
<tr>
<th>Source Location (cm)</th>
<th>Max. % Diff. UTR to Reference Soil</th>
<th>Min. % Diff. UTR to Reference Soil</th>
<th>Max. % Diff. MLTR to Reference Soil</th>
<th>Min. % Diff. MLTR to Reference Soil</th>
<th>Max. % Diff. UTR to MLTR</th>
<th>Min. % Diff. UTR to MLTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>16.9%</td>
<td>10.4%</td>
<td>8.5%</td>
<td>1.8%</td>
<td>9.2%</td>
<td>7.4%</td>
</tr>
<tr>
<td>2-4</td>
<td>36.7%</td>
<td>22.1%</td>
<td>20.4%</td>
<td>1.1%</td>
<td>21.4%</td>
<td>11.6%</td>
</tr>
<tr>
<td>4-6</td>
<td>59.0%</td>
<td>41.3%</td>
<td>19.9%</td>
<td>0.2%</td>
<td>42.8%</td>
<td>24.3%</td>
</tr>
<tr>
<td>6-8</td>
<td>72.4%</td>
<td>53.4%</td>
<td>19.1%</td>
<td>-2.5%</td>
<td>64.8%</td>
<td>37.2%</td>
</tr>
</tbody>
</table>
Stylized/Asian-scaled vs. Reference: 0 – 2 cm
Reference Male Series: 0 – 2 cm

![Bar chart showing organ comparisons with different colors representing different data sets](chart.png)
Reference Hybrid Phantoms vs. FGR 12

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01M</td>
<td>32.9%</td>
<td>-19.8%</td>
<td>18.4%</td>
<td>46.3%</td>
<td>7.6%</td>
<td>32.5%</td>
</tr>
<tr>
<td>05M</td>
<td>25.1%</td>
<td>-14.6%</td>
<td>12.9%</td>
<td>40.0%</td>
<td>9.4%</td>
<td>26.1%</td>
</tr>
<tr>
<td>10M</td>
<td>15.0%</td>
<td>-18.4%</td>
<td>7.0%</td>
<td>25.8%</td>
<td>5.9%</td>
<td>17.0%</td>
</tr>
<tr>
<td>15M</td>
<td>6.0%</td>
<td>-22.5%</td>
<td>0.2%</td>
<td>14.2%</td>
<td>2.0%</td>
<td>7.5%</td>
</tr>
<tr>
<td>30M</td>
<td>-1.0%</td>
<td>-25.4%</td>
<td>-8.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

• Increasing the phantom age results in decreased organ dose coefficient

• UTR soil yields highest organ dose coefficients, followed by MLTR soil and FGR 12 soil

• Maximum absolute percent difference hybrid reference adult to stylized adult
 • 10% (male), 8.4% (female)

• Absolute maximum percent difference Asian-scaled male/female vs. reference male/female
 • 15.7% (adult male), 8.9% (5 YO female)
Conclusions

- Percent difference UTR \rightarrow REF soil for adult male
 - 10.4% - 72.4% (over all source locations)

- Percent difference MLTR \rightarrow REF soil for adult male
 - -2.5% - 20.4% (over all source locations)

- Percent difference UTR \rightarrow MLTR soil for adult male
 - 7.4% to 64.8% (over all source locations)

- Overall...
 - Wide variation in dose coefficient dependent on soil, age, morphometry
 - Single stylized phantom does not accurately convey organ dose coefficient
 - Study underscores need for accurate quantification of organ dose coefficients from external sources
Acknowledgements

• Committee
 • Wesley Bolch
 • David Hintenlang
 • Chang-Yu Wu

• Institutions
 • U.S. Department of Energy (DOE)
 • Pacific Northwest National Laboratory (PNNL)
 • Urals Research Center for Radiation Medicine (URCRM)

• ALRADS Group
 • Matthew Maynard
 • Elliott Stepusin
 • Amy Geyer
 • Michelle Sands

• PNNL
 • Bruce Napier

• URCRM
 • Elena Shishkina
 • Marina Degteva
 • Evgenia Tolstykh

• ORNL
 • Michael Bellamy