Historical Reconstruction of Co-60 Radiotherapy Doses to Patients with Hodgkin’s Lymphoma

Heather M. Petroccia, MS

Advanced Laboratory for Radiation Dosimetry Studies (ALRADS)
Medical Physics Program
J. Crayton Pruitt Family Department of Biomedical Engineering
University of Florida, Gainesville, FL
April 10th, 2015
Background

• What is Hodgkin’s Lymphoma (HL)?
 – Cancer of the lymphocytes

• Why are we interested in HL?
 – Correlating mean organ dose with late radiation effects
 • “Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII”
 – Benefits of the study
 • Known delivered tumor doses
 • Relatively large field sizes
 – Negatives of the study
 • Radiation therapy as well as chemotherapy were used
 • Genetic predisposition to certain diseases
 • Historically, treatment planning did not include 3D image sets
Correlating Dose with Late Radiation Effects

- Secondary cancers are the leading cause of death in 15 years survivors of HL (Hoppe et al 1997)

- Goal of creating more accurate risk models

- University of Florida cohort
 - 55 patients with at least 40 years of potential follow-up
 - 24 second malignancies identified in 19 patients
 - 22 in-field second malignancies in 17 patients

5 year OS: 79.7% (95% CI; 66.9-88.4%)
10 year OS: 64.9% (95% CI; 51.4-76.3%)
20 year OS: 55.5% (95% CI; 42.2-68.1%)
Organs at Risk

Mantle Field

- Thyroid (hypothyroidism, multinodular goiter, thyroid cancer)
- Heart (coronary artery disease, valvular insuff./sten., cardiomyopathy)
- Lungs (lung cancer, pulmonary fibrosis)
- Breast (invasive carcinoma and DCIS)
- Peripheral Vasculature (subclavian steal syndrome, carotid dz)
- Spinal Cord (transverse myelitis)

Inverted Y Field

- Small and large bowel (radiation enteritis, colonic polyps)
- Gonads (ovarian dysfunction, infertility)
- Peripheral Vasculature (renal artery stenosis, mesenteric angina)
Previous Dosimetry Methods

1. Calculations in 3-D mathematical computer models using an extensive database of out-of-beam doses
2. Measurements in anthropomorphic phantoms constructed of tissue-equivalent material
3. Calculations using 3-D treatment planning

<table>
<thead>
<tr>
<th>Modality</th>
<th>Dose reconstruction organ site</th>
<th>Mean organ dose, Gy (range)</th>
<th>Dosimetry method</th>
<th>Number of patients</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hodgkin lymphoma</td>
<td>Lung</td>
<td>(0.5–4.9)</td>
<td>1 (with correction for lung blocking)</td>
<td>Cases = 98, Controls = 259</td>
<td>Kaldor et al. (82)</td>
</tr>
<tr>
<td>External beam</td>
<td>Lung</td>
<td>7.2 (<1–15.2) cases</td>
<td>1, 3</td>
<td>Cases = 29, Controls = 82</td>
<td>van Leeuwen et al. (83)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.7 (<1–21.0) controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External beam</td>
<td>Lung</td>
<td>27.2 (median 33.8) cases</td>
<td>1, 3</td>
<td>Cases = 222, Controls = 444</td>
<td>Travis et al. (41)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21.8 (median 29.4) controls</td>
<td></td>
<td></td>
<td>Gilbert et al. (42)</td>
</tr>
</tbody>
</table>

Monte Carlo Methods

- Large differences between doses reported from treatment planning system (TPS) doses and measured values
 - TPS underestimates dose up to 55% at 11.25 cm from the treatment field border (Howell et al. 2010)
 - Large differences in mean doses between TPS and Monte Carlo calculations, up to 70% (Joosten et al. 2013)

- Lack of 2D & 3D image sets creates a need for computational phantoms

- In-field and out-of-field doses can be considered with Monte Carlo methods

"The UF Family of Reference Hybrid Phantoms for Computational Radiation Dosimetry" (Lee et al. 2004)
Overview of Anthropomorphic Data

<table>
<thead>
<tr>
<th>Patient #</th>
<th>Sex</th>
<th>Age</th>
<th>Height</th>
<th>Weight [lbs]</th>
<th>Arm Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>16</td>
<td>5' 7"</td>
<td>158</td>
<td>up</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>16</td>
<td>5' 10"</td>
<td>138.8</td>
<td>down</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>12</td>
<td>5' 3"</td>
<td>111.7</td>
<td>down</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>14</td>
<td>6' 2"</td>
<td>199.6</td>
<td>down</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>21</td>
<td>5' 5"</td>
<td>136</td>
<td>up</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>20</td>
<td>5' 5"</td>
<td>107</td>
<td>down</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>36</td>
<td>5' 6"</td>
<td>187.5</td>
<td>down</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>22</td>
<td>6' 2"</td>
<td>172</td>
<td>up</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>57</td>
<td>5' 6"</td>
<td>179.3</td>
<td>down</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>17</td>
<td>5' 5"</td>
<td>154.7</td>
<td>down</td>
</tr>
</tbody>
</table>

- Modeled Cobalt-60 teletherapy unit
- Matched subjects to UF/NCI phantom library
- Generated “Historical” information
- Subjects matched to a mantle field treatment
- Calculated relative organ doses
Cobalt-60 Teletherapy Unit

- Source Capsule & Housing
- Primary Definer
- Moveable Collimators
- Trimmer Bars
- Cerrobend block

SSD = 80 cm
Validation for In-Field and Out-of-Field Doses

- **In-field**
 - Agrees with British Journal of Radiology Supplement 25 percent depth dose (PDD) data with in ~1%

- **Out-of-field**
 - Agrees with AAPM Radiation Therapy Committee Task Group No. 36 “Fetal dose from Radiotherapy with photon beams” within 8.8%
Phantom Patient matching

Variations of phantoms for Subject 10

LEAST

Library (LIB)

Progression of Refinement

MOST

Caliper-Scaled Hybrid (CSH)

Photo-Caliper-Scaled Hybrid (PCSH)

Patient Specific Voxel (PSV)
Phantom Patient matching

Variations of phantoms for Subject 10

LEAST

Library (LIB)
Caliper-Scaled Hybrid (CSH)

Progression of Refinement

Photo-Caliper-Scaled Hybrid (PCSH)
Patient Specific Voxel (PSV)

MOST
Phantom Patient matching

Progression of Refinement

LEAST

Library (LIB) | Caliper-Scaled Hybrid (CSH) | Photo-Caliper-Scaled Hybrid (PCSH) | Patient Specific Voxel (PSV)

MOST

Caliper-Scaled Hybrid (CSH) → Photo-Caliper Scaled Hybrid (PCSH)

Variations of phantoms for Subject 10
Phantom Patient matching

Variations of phantoms for Subject 10

LEAST

Library (LIB)

Caliper-Scaled Hybrid (CSH)

Photo-Caliper-Scaled Hybrid (PCSH)

Patient Specific Voxel (PSV)

Progression of Refinement

MOST
Mantle Field Recreation

- Co-60 unit is paired with variations of phantoms for estimating mean organ dose
- Reconstruction
 - AP/PA fields
 - 80 cm SSD
 - 35 Gy prescribed to midline at suprasternal SSN
 - 3:2 anteriorly weighted
Results

A.

Average Percent Difference for all Organs

<table>
<thead>
<tr>
<th>Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSV/LIB</td>
<td>27.9%</td>
</tr>
<tr>
<td>PSV/CSH</td>
<td>24.8%</td>
</tr>
<tr>
<td>PSV/PCSH</td>
<td>24.2%</td>
</tr>
</tbody>
</table>

B.

Average Percent Different for all In-Field Organs

<table>
<thead>
<tr>
<th>Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSV/LIB</td>
<td>14.3%</td>
</tr>
<tr>
<td>PSV/CSH</td>
<td>11.6%</td>
</tr>
<tr>
<td>PSV/PCSH</td>
<td>11.0%</td>
</tr>
</tbody>
</table>

C.

Average Percent Different for all Out-of-Field Organs

<table>
<thead>
<tr>
<th>Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSV/LIB</td>
<td>49.1%</td>
</tr>
<tr>
<td>PSV/CSH</td>
<td>48.9%</td>
</tr>
<tr>
<td>PSV/PCSH</td>
<td>47.1%</td>
</tr>
</tbody>
</table>
Acknowledgements

• Research Group
 – Dr. Wesley Bolch
 – Dr. Nancy Mendenhall
 – Dr. Zuofeng Li
 – Shannon O’Reilly, M.S.

• UF College of Medicine
 – Adam Holtzman, M.D.
 – John Stahl, M.D.

• External
 – Tom Mitchell, M.S.

• ALRADS Group